In this work, we introduce our submission to the 2nd Affective Behavior Analysis in-the-wild (ABAW) 2021 competition. We train a unified deep learning model on multi-databases to perform two tasks: seven basic facial expressions prediction and valence-arousal estimation. Since these databases do not contains labels for all the two tasks, we have applied the distillation knowledge technique to train two networks: one teacher and one student model. The student model will be trained using both ground truth labels and soft labels derived from the pretrained teacher model. During the training, we add one more task, which is the combination of the two mentioned tasks, for better exploiting inter-task correlations. We also exploit the sharing videos between the two tasks of the AffWild2 database that is used in the competition, to further improve the performance of the network. Experiment results shows that the network have achieved promising results on the validation set of the AffWild2 database. Code and pretrained model are publicly available at https://github.com/glmanhtu/multitask-abaw-2021
翻译:在这项工作中,我们介绍了提交2021年Wird (ABAW) 第二次消极行为分析(ABAW) 竞赛的呈件;我们培训了多数据库的统一深层次学习模式,以完成两项任务:七个基本的面部表达预测和价值-振奋估计;由于这些数据库没有包含所有这两项任务的标签,我们应用了蒸馏知识技术来培训两个网络:一个教师和一个学生模型;学生模型将同时使用来自预先培训的教师模型的地面真相标签和软标签进行培训;在培训期间,我们又增加了一项任务,即上述两项任务的结合,以更好地利用各种任务之间的关系;我们还利用AffWird2数据库在竞争中使用的两项任务之间的共享视频,以进一步提高网络的绩效;实验结果显示,该网络在AffWild2数据库的验证数据集上取得了令人振奋奋的成果。在https://github.com/glmanh/Myttask-Abaw-2021上公开提供代码和预先培训模型。