This paper describes the development of a multilingual, manually annotated dataset for three under-resourced Dravidian languages generated from social media comments. The dataset was annotated for sentiment analysis and offensive language identification for a total of more than 60,000 YouTube comments. The dataset consists of around 44,000 comments in Tamil-English, around 7,000 comments in Kannada-English, and around 20,000 comments in Malayalam-English. The data was manually annotated by volunteer annotators and has a high inter-annotator agreement in Krippendorff's alpha. The dataset contains all types of code-mixing phenomena since it comprises user-generated content from a multilingual country. We also present baseline experiments to establish benchmarks on the dataset using machine learning methods. The dataset is available on Github (https://github.com/bharathichezhiyan/DravidianCodeMix-Dataset) and Zenodo (https://zenodo.org/record/4750858\#.YJtw0SYo\_0M).
翻译:本文介绍了为社交媒体评论产生的三种资源不足的德拉维迪语制作的多语种人工附加说明数据集的情况,数据集用于情绪分析和攻击性语言识别,共60 000多条YouTube评论,数据集包括大约44 000条泰米尔语-英语评论,约7 000条Kannada英语评论,约20 000条Malayalam-英语评论,这些数据由自愿助教员手工附加说明,在Krippendorf's alpha 中具有高度的跨咨询协议。数据集包含所有类型的代码混合现象,因为它包括来自多语种国家的用户生成的内容。我们还介绍了利用机器学习方法建立数据集基准的基准实验。数据集可在Github(https://github.com/bharathichichhiyan/DravidianCodeMix-Dataset)和Zenodo(https://zenodo.org/record/470858 ⁇.YJtwSY0SY0ZM)上查阅。