Uplink grant-free non-orthogonal multiple access (NOMA) is a promising technology for massive connectivity with low latency and high energy efficiency. In code-domain NOMA schemes, the requirements boil down to the design of codebooks that contain a large number of spreading sequences with low peak-to-average power ratio (PAPR) while maintaining low coherence. When employing binary Golay sequences with guaranteed low PAPR in the design, the fundamental problem is to construct a large set of $n$-variable quadratic bent or near-bent functions in a particular form such that the difference of any two is bent for even $n$ or near-bent for odd $n$ to achieve optimally low coherence. In this work, we propose a theoretical construction of NOMA codebooks by applying a recursive approach to those particular quadratic bent functions in smaller dimensions. The proposed construction yields desired NOMA codebooks that contain $6\cdot N$ Golay sequences of length $N=2^{4m}$ for any positive integer $m$ and have the lowest possible coherence $1/\sqrt{N}$.
翻译:上行免授权非正交多址接入技术是实现低时延、高能效海量连接的关键技术。在码域非正交多址方案中,核心需求可归结为设计包含大量扩频序列的码本,这些序列需兼具低峰均功率比与低互相关性。当采用具有低峰均功率比保证的二进制Golay序列进行设计时,根本问题在于构造特定形式下的大规模$n$元二次Bent函数或近Bent函数集合,使得任意两函数之差在$n$为偶数时仍为Bent函数、$n$为奇数时为近Bent函数,从而实现理论最优的低互相关性。本研究提出一种基于递归方法的理论构造方案,通过对低维特定二次Bent函数进行递归扩展,构建出包含$6\cdot N$个长度为$N=2^{4m}$的Golay序列的非正交多址码本($m$为任意正整数),该码本达到理论最低互相关值$1/\sqrt{N}$。