In this paper, we present an approach to study the behavior of compliant plates in granular media and optimize the performance of a robot that utilizes this technique for mobility. From previous work and fundamental tests on thin plate force generation inside granular media, we introduce an origami-inspired mechanism with non-linear compliance in the joints that can be used in granular propulsion. This concept utilizes one-sided joint limits to create an asymmetric gait cycle that avoids more complicated alternatives often found in other swimming/digging robots. To analyze its locomotion as well as its shape and propulsive force, we utilize granular Resistive Force Theory (RFT) as a starting point. Adding compliance to this theory enables us to predict the time-based evolution of compliant plates when they are dragged and rotated. It also permits more rational design of swimming robots where fin design variables may be optimized against the characteristics of the granular medium. This is done using a Python-based dynamic simulation library to model the deformation of the plates and optimize aspects of the robot's gait. Finally, we prototype and test robot with a gait optimized using the modelling techniques mentioned above.
翻译:在本文中, 我们提出一种方法, 研究颗粒介质中符合要求的板块的行为, 并优化使用这种机动性技术的机器人的性能。 从以前的工作和对颗粒介质中薄板力生成的基本测试中, 我们引入了在可用于颗粒推进的关节中非线性合规的折合金激励机制。 这个概念使用单向联合限制来创建不对称的轮曲周期, 避免在其他游泳/ 挖掘机器人中常见到的更复杂的替代品。 为了分析其滚动以及其形状和推进力, 我们用颗粒弹性力理论(RFT)作为起点。 加入这一理论使我们能够预测在拖动和旋转时符合要求的板块的时间性演变。 它还允许更合理地设计游泳机器人, 以便根据颗粒介质介质介质的特性优化裁剪裁。 这是利用一个基于Python的动态模拟图书馆来模拟板的变形, 优化机器人的轮廓。 最后, 我们用上面提到的模型和测试机器人的模型。