Intelligent electronics are deeply embedded in critical infrastructures and must remain reliable, particularly against deliberate attacks. To minimize risks and impede remote compromise, sensitive systems can be physically isolated from external networks, forming an airgap. Yet, airgaps can still be infiltrated by capable adversaries gaining code execution. Prior research has shown that attackers can then attempt to wirelessly exfiltrate data across the airgap by exploiting unintended radio emissions. In this work, we demonstrate reversal of this link: malicious code execution on embedded devices can enable wireless infiltration of airgapped systems without any hardware modification. In contrast to previous infiltration methods that depend on dedicated sensors (e.g., microphones, LEDs, or temperature sensors) or require strict line-of-sight, we show that unmodified, sensor-less embedded devices can inadvertently act as radio receivers. This phenomenon stems from parasitic RF sensitivity in PCB traces and on-chip analog-to-digital converters (ADCs), allowing external transmissions to be received and decoded entirely in software. Across twelve commercially available embedded devices and two custom prototypes, we observe repeatable reception in the 300-1000 MHz range, with detectable signal power as low as 1 mW. To this end, we propose a systematic methodology to identify device configurations that foster such radio sensitivities and comprehensively evaluate their feasibility for wireless data reception. Exploiting these sensitivities, we demonstrate successful data reception over tens of meters, even in non-line-of-sight conditions and show that the reception sensitivities accommodate data rates of up to 100 kbps. Our findings reveal a previously unexplored command-and-control vector for air-gapped systems while challenging assumptions about their inherent isolation. [shortened]


翻译:暂无翻译

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员