Multilevel estimators aim at reducing the variance of Monte Carlo statistical estimators, by combining samples generated with simulators of different costs and accuracies. In particular, the recent work of Schaden and Ullmann (2020) on the multilevel best linear unbiased estimator (MLBLUE) introduces a framework unifying several multilevel and multifidelity techniques. The MLBLUE is reintroduced here using a variance minimization approach rather than the regression approach of Schaden and Ullmann. We then discuss possible extensions of the scalar MLBLUE to a multidimensional setting, i.e. from the expectation of scalar random variables to the expectation of random vectors. Several estimators of increasing complexity are proposed: a) multilevel estimators with scalar weights, b) with element-wise weights, c) with spectral weights and d) with general matrix weights. The computational cost of each method is discussed. We finally extend the MLBLUE to the estimation of second-order moments in the multidimensional case, i.e. to the estimation of covariance matrices. The multilevel estimators proposed are d) a multilevel estimator with scalar weights and e) with element-wise weights. In large-dimension applications such as data assimilation for geosciences, the latter estimator is computationnally unaffordable. As a remedy, we also propose f) a multilevel covariance matrix estimator with optimal multilevel localization, inspired by the optimal localization theory of M\'en\'etrier and Aulign\'e (2015). Some practical details on weighted MLMC estimators of covariance matrices are given in appendix.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员