We propose a continuous optimization algorithm for the Column Subset Selection Problem (CSSP) and Nystr\"om approximation. The CSSP and Nystr\"om method construct low-rank approximations of matrices based on a predetermined subset of columns. It is well known that choosing the best column subset of size $k$ is a difficult combinatorial problem. In this work, we show how one can approximate the optimal solution by defining a penalized continuous loss function which is minimized via stochastic gradient descent. We show that the gradients of this loss function can be estimated efficiently using matrix-vector products with a data matrix $X$ in the case of the CSSP or a kernel matrix $K$ in the case of the Nystr\"om approximation. We provide numerical results for a number of real datasets showing that this continuous optimization is competitive against existing methods.


翻译:我们提出了一种通过连续优化进行列子集选择问题(CSSP)和Nyström逼近的算法。CSSP和Nyström方法基于预定的一组列构建矩阵的低秩近似。众所周知,选择最佳大小为$k$的列子集是一项困难的组合优化问题。本文中,我们展示了如何通过定义一个惩罚连续损失函数来近似最优解,该函数通过随机梯度下降进行最小化。我们展示了在CSSP的情况下可以使用数据矩阵$X$的矩阵-向量乘积高效地估算该损失函数的梯度,在Nyström逼近的情况下可以使用核矩阵$K$。我们提供了许多真实数据集的数值结果,表明这种连续优化与现有方法相比具有竞争力。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
61+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员