Deep Learning (DL) algorithms have shown impressive performance in diverse domains. Among them, audio has attracted many researchers over the last couple of decades due to some interesting patterns--particularly in classification of audio data. For better performance of audio classification, feature selection and combination play a key role as they have the potential to make or break the performance of any DL model. To investigate this role, we conduct an extensive evaluation of the performance of several cutting-edge DL models (i.e., Convolutional Neural Network, EfficientNet, MobileNet, Supper Vector Machine and Multi-Perceptron) with various state-of-the-art audio features (i.e., Mel Spectrogram, Mel Frequency Cepstral Coefficients, and Zero Crossing Rate) either independently or as a combination (i.e., through ensembling) on three different datasets (i.e., Free Spoken Digits Dataset, Audio Urdu Digits Dataset, and Audio Gujarati Digits Dataset). Overall, results suggest feature selection depends on both the dataset and the model. However, feature combinations should be restricted to the only features that already achieve good performances when used individually (i.e., mostly Mel Spectrogram, Mel Frequency Cepstral Coefficients). Such feature combination/ensembling enabled us to outperform the previous state-of-the-art results irrespective of our choice of DL model.
翻译:深学习( DL) 算法在不同领域表现出令人印象深刻的绩效。 其中, 近几十年来, 音频吸引了许多研究人员, 特别是音频数据的分类模式。 音频分类、 特征选择和组合的更好性能具有关键作用, 因为音频分类、 特征选择和组合的更好性能有可能使任何 DL 模型产生或破坏性能。 为了调查这一作用, 我们广泛评价了三种最先进的 DL 模型( 即 Free Spoken Digits Dataset、 音频 Urdu Digitset、 音频 Genaitits Dataset) 的性能。 总体而言, 结果显示, 选择地貌取决于数据设置和本地性能( Mel Spectrographram), 然而, 最常用的Melprographes 组合应该限制我们之前的Melprogration 。 这样的Melprogration 。 组合应该限制我们使用的Melprogration 。