Nowadays, the shipbuilding industry is facing a radical change towards solutions with a smaller environmental impact. This can be achieved with low emissions engines, optimized shape designs with lower wave resistance and noise generation, and by reducing the metal raw materials used during the manufacturing. This work focuses on the last aspect by presenting a complete structural optimization pipeline for modern passenger ship hulls which exploits advanced model order reduction techniques to reduce the dimensionality of both input parameters and outputs of interest. We introduce a novel approach which incorporates parameter space reduction through active subspaces into the proper orthogonal decomposition with interpolation method. This is done in a multi-fidelity setting. We test the whole framework on a simplified model of a midship section and on the full model of a passenger ship, controlled by 20 and 16 parameters, respectively. We present a comprehensive error analysis and show the capabilities and usefulness of the methods especially during the preliminary design phase, finding new unconsidered designs while handling high dimensional parameterizations.
翻译:目前,造船业正面临着向环境影响较小的解决方案的彻底转变,这可以通过低排放引擎、使用低波阻力和噪音生成的优化形状设计以及减少制造过程中使用的金属原料来实现。这项工作侧重于最后一个方面,为现代客船船体提供一个完整的结构优化管道,利用先进的减少定单示范技术来减少输入参数和引人注意产出的维度。我们引入了一种新颖的方法,将通过活性子空间减少参数空间纳入与内推法的正正正交分分层。这是在多纤维环境下完成的。我们对整个框架进行测试,测试的是中位部分的简化模型和客船的完整模型,分别由20和16个参数控制。我们提出了全面的错误分析,并展示了方法的能力和实用性,特别是在初步设计阶段,在处理高维参数化时找到新的未考虑的设计。