Early identification of patients with COVID-19 is essential to enable adequate treatment and to reduce the burden on the health system. The gold standard for COVID-19 detection is the use of RT-PCR tests. However, due to the high demand for tests, these can take days or even weeks in some regions of Brazil. Thus, an alternative for detecting COVID-19 is the analysis of Digital Chest X-rays (XR). Changes due to COVID-19 can be detected in XR, even in asymptomatic patients. In this context, models based on deep learning have great potential to be used as support systems for diagnosis or as screening tools. In this paper, we propose the evaluation of convolutional neural networks to identify pneumonia due to COVID-19 in XR. The proposed methodology consists of a preprocessing step of the XR, data augmentation, and classification by the convolutional architectures DenseNet121, InceptionResNetV2, InceptionV3, MovileNetV2, ResNet50, and VGG16 pre-trained with the ImageNet dataset. The obtained results demonstrate that the VGG16 architecture obtained superior performance in the classification of XR for the evaluation metrics using the methodology proposed in this article. The obtained results for our methodology demonstrate that the VGG16 architecture presented a superior performance in the classification of XR, with an Accuracy of 85.11%, Sensitivity of 85.25%, Specificity of $85.16%, F1-score of $85.03%, and an AUC of 0.9758.


翻译:早期识别患有COVID-19的病人对于进行适当的治疗和减轻卫生系统的负担至关重要。COVID-19检测的黄金标准是使用RT-PCR测试。然而,由于巴西某些地区对检测的需求很高,这可能需要几天甚至几周时间。因此,检测COVID-19的替代办法是分析数字胸X射线(XR) 。在XR 中可以检测到COVID-19的变化,即使是在无症状的病人中也是如此。在这方面,基于深层次学习的模型极有可能用作诊断或筛选工具的支持系统。在本文件中,我们提议对脉冲神经网络进行评估,以查明XR CVID-19的肺炎。拟议方法包括XR的预处理步骤、数据增强和由革命结构DenseNet121、InvitionResNetV2、InceptionionV3、MovileNet2、ResNet50和VGG16 预受图像网络数据集培训的模型。我们获得的图像网络诊断系统神经神经网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络网络测试的模型,用于XVIGCA85%的高级分析结果。在VGGGIA中展示了ALILILIA的85的A方法中, liV18A的高级分析结果。在VILIA中,在A中,在使用了A的A的85R的85R liVLILILIA中,在A中获得了了85 IIIA的高级方法中,在A中,在A中,在A IIA IIIA的A的A的A 16中,在A中,在A的A的A中,在A中,在A中获得了的A的A中,在A的A中获得了了85IBLIBLIBIBIBA的高级的A的A的A的A中,在A中,在A中,在A中,在A的A中,在A的A的A的A的A中,在A的A的85LI的A中,在A中,在A中,在A中,在A中,在A中,在A中,在A的A的A的85LILILILIA的85A的A的A的A的A的A的

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
VIP会员
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员