Hierarchical Bayesian models of perception and learning feature prominently in contemporary cognitive neuroscience where, for example, they inform computational concepts of mental disorders. This includes predictive coding and hierarchical Gaussian filtering (HGF), which differ in the nature of hierarchical representations. In this work, we present a new class of artificial neural networks that unifies computational principles of PC and HGFs. We extend the space of generative models underlying HGF to include a form of nonlinear hierarchical coupling between state values akin to predictive coding and artificial neural networks in general. We derive the update equations corresponding to this generalization of HGF and conceptualize them as connecting a network of (belief) nodes where parent nodes either predict the state of child nodes or their rate of change. This enables us to (1) create modular architectures with generic computational steps in each node of the network, and (2) disclose the hierarchical message passing implied by generalized HGF models and to compare this to comparable schemes under predictive coding. The practical advances of this work are twofold: on the one hand, our extension allows for a modular construction of ANNs of arbitrarily complex hierarchical structure under the general principles of HGF. On the other hand, by providing a highly flexible implementation of hierarchical Bayesian models available as open source software, it enables new types of empirical data analysis in computational psychiatry.
翻译:层次贝叶斯模型在当代认知神经科学中占据重要地位,例如,它们为精神障碍的计算概念提供了理论基础。这包括预测编码和层次高斯滤波(HGF),两者在层次表示的性质上有所不同。在本研究中,我们提出了一类新的人工神经网络,它统一了预测编码和层次高斯滤波的计算原理。我们扩展了支撑HGF的生成模型空间,纳入了一种非线性层次耦合形式,类似于预测编码及一般人工神经网络中的状态值关联。我们推导了对应这一广义HGF的更新方程,并将其概念化为连接一个(信念)节点网络,其中父节点要么预测子节点的状态,要么预测其变化率。这使我们能够:(1)构建模块化架构,在网络每个节点中实现通用计算步骤;(2)揭示广义HGF模型所隐含的层次消息传递机制,并将其与预测编码下的类似方案进行比较。本工作的实际进展体现在两方面:一方面,我们的扩展允许在HGF的一般原理下,模块化构建任意复杂层次结构的人工神经网络;另一方面,通过提供高度灵活的层次贝叶斯模型开源软件实现,它支持计算精神病学中新型实证数据分析。