We present a robust, highly accurate, and efficient positivity- and boundedness-preserving diffuse interface method for the simulations of compressible gas-liquid two-phase flows with the five-equation model by Allaire et al. using high-order finite difference weighted compact nonlinear scheme (WCNS) in the explicit form. The equation of states of gas and liquid are given by the ideal gas and stiffened gas laws respectively. Under a mild assumption on the relative magnitude between the ratios of specific heats of the gas and liquid, we can construct limiting procedures for the fifth order incremental-stencil WCNS (WCNS-IS) with the first order Harten-Lax-van Leer contact (HLLC) flux such that positive partial densities and squared speed of sound can be ensured in the solutions, together with bounded volume fractions and mass fractions. The limiting procedures are discretely conservative for all conservative equations in the five-equation model and can also be easily extended for any other conservative finite difference or finite volume scheme. Numerical tests with liquid water and air are reported to demonstrate the robustness and high accuracy of the WCNS-IS with the positivity- and boundedness-preserving limiters even under extreme conditions.
翻译:Allaire等人采用高阶有限差异加权缩压非线性非线性办法(WCNS),为模拟压缩气体-液态双阶段流动,使用高阶有限差异加权压紧非线性办法(WCNS),我们提出了一个稳健、高度准确和高效的活性-约束性-防阻式界面方法。气体和液体状态的等式分别由理想气体和硬化气体法分别给出。根据对气体和液体特定热量比相对规模的适度假设,我们可以为第五级增压-液态WCNS(WCNS-IS)设定限制程序,第一级Harten-Lax-vanleer接触(HLLLC)通量,确保溶液中积极的部分密度和正方位声音,以及捆绑的体分数和质量分数。限制程序对于五度模型中所有稳妥的方方程式都是保守的,对于任何其他保守的定点的定点差异或有限的体积积度办法也容易扩展。据报告,在液态水和空气的精确度下,对液态-水和空气的稳定度进行了数值测试。