We propose a unitary precoding scheme, namely polar-precoding, to improve the performance of polar-coded MIMO systems. In contrast to the traditional design of MIMO precoding criteria, the proposed polar-precoding scheme relies on the \emph{polarization criterion}. In particular, the precoding matrix design comprises two steps. After selecting a basic matrix for maximizing the capacity in the first step, we design a unitary matrix for maximizing the polarization effect among the data streams without degrading the capacity. Our simulation results show that the proposed polar-precoding scheme outperforms the state-of-the-art DFT precoding scheme.


翻译:我们提议了一个单一的预编码计划,即极地预编码计划,以改善极地编码的MSIM系统的性能。与MIMO预编码标准的传统设计相反,拟议的极地预编码计划依赖于\emph{polarization标准}。特别是,预编码矩阵设计包括两个步骤。在选择了一个基本矩阵以在第一步最大限度地提高能力之后,我们设计了一个统一矩阵,以便在不降低能力的情况下最大限度地扩大数据流之间的两极分化效应。我们的模拟结果表明,拟议的极地预编码计划优于先进的DFT预编码计划。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年11月3日
VIP会员
相关VIP内容
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员