The mechanisms of emergence and evolution of collective behaviours in dynamical Multi-Agent Systems (MAS) of multiple interacting agents, with diverse behavioral strategies in co-presence, have been undergoing mathematical study via Evolutionary Game Theory (EGT). Their systematic study also resorts to agent-based modelling and simulation (ABM) techniques, thus enabling the study of aforesaid mechanisms under a variety of conditions, parameters, and alternative virtual games. This paper summarises some main research directions and challenges tackled in our group, using methods from EGT and ABM. These range from the introduction of cognitive and emotional mechanisms into agents' implementation in an evolving MAS, to the cost-efficient interference for promoting prosocial behaviours in complex networks, to the regulation and governance of AI safety development ecology, and to the equilibrium analysis of random evolutionary multi-player games. This brief aims to sensitize the reader to EGT based issues, results and prospects, which are accruing in importance for the modeling of minds with machines and the engineering of prosocial behaviours in dynamical MAS, with impact on our understanding of the emergence and stability of collective behaviours. In all cases, important open problems in MAS research as viewed or prioritised by the group are described.
翻译:多个互动机构动态多功能系统中集体行为的出现和演变机制,以及共同存在的不同行为战略,一直在通过进化游戏理论进行数学研究,其系统研究还利用以代理为基础的建模和模拟(ABM)技术,从而能够在各种条件、参数和替代虚拟游戏中研究上述机制。本文总结了我们集团内使用EGT和反弹道导弹方法处理的一些主要研究方向和挑战。这些方法包括将认知和情感机制引入代理人在不断发展的MAS中实施,对促进复杂网络中的亲社会行为进行具有成本效益的干预,对AI安全发展生态进行监管和治理,对随机进化多玩游戏进行均衡分析。本简介的目的是让读者了解基于EGT的问题、结果和前景,这些问题对于以机器和动态MAS中亲社会行为的工程进行建模至关重要,影响我们对集体行动的出现和稳定性的理解。在所有案例中,MAS研究中的重要公开问题都由先前或过去所描述。