This work brings the leading accuracy, sample efficiency, and robustness of deep equivariant neural networks to the extreme computational scale. This is achieved through a combination of innovative model architecture, massive parallelization, and models and implementations optimized for efficient GPU utilization. The resulting Allegro architecture bridges the accuracy-speed tradeoff of atomistic simulations and enables description of dynamics in structures of unprecedented complexity at quantum fidelity. To illustrate the scalability of Allegro, we perform nanoseconds-long stable simulations of protein dynamics and scale up to a 44-million atom structure of a complete, all-atom, explicitly solvated HIV capsid on the Perlmutter supercomputer. We demonstrate excellent strong scaling up to 100 million atoms and 70% weak scaling to 5120 A100 GPUs.
翻译:本文通过创新的模型架构、大规模并行化和针对高效 GPU 利用率进行优化的模型和实现,将深度等变神经网络的领先准确率、样本效率和鲁棒性扩展到极限计算规模。由此产生的 Allegro 架构填补了原子模拟的准确模拟和速度的权衡,并能够实现量子保真度下对空前复杂结构的动态描述。为了说明 Allegro 的可扩展性,我们进行了蛋白质动力学的纳秒级稳定模拟,并在 Perlmutter 超级计算机上扩展到全原子、显式溶剂 HIV 壳体的 4400 万原子结构。我们展示了出色的强可伸缩性,可扩展至 1 亿原子,并实现了 70% 的弱可伸缩性达到 5120 个 A100 GPU。