Whereas quantum complexity theory has traditionally been concerned with problems arising from classical complexity theory (such as computing boolean functions), it also makes sense to study the complexity of inherently quantum operations such as constructing quantum states or performing unitary transformations. With this motivation, we define models of interactive proofs for synthesizing quantum states and unitaries, where a polynomial-time quantum verifier interacts with an untrusted quantum prover, and a verifier who accepts also outputs an approximation of the target state (for the state synthesis problem) or the result of the target unitary applied to the input state (for the unitary synthesis problem); furthermore there should exist an "honest" prover which the verifier accepts with probability 1. Our main result is a "state synthesis" analogue of the inclusion PSPACE $\subseteq$ IP: any sequence of states computable by a polynomial-space quantum algorithm (which may run for exponential time) admits an interactive protocol of the form described above. Leveraging this state synthesis protocol, we also give a unitary synthesis protocol for polynomial space-computable unitaries that act nontrivially on only a polynomial-dimensional subspace.
翻译:虽然量子复杂性理论传统上一直关注传统复杂理论(如计算布尔函数)引起的问题,但研究诸如构建量子状态或进行单质变换等内在量子操作的复杂性也是合理的。有了这一动机,我们定义了合成量子状态和单质的交互式证据模型,其中多元时量子核查器与不可靠的量子检验器相互作用,而接受输出目标状态近似(国家合成问题)或适用于输入状态的目标统一体结果(单一合成问题)的核查器,这同样也有意义;此外,还应存在一个“诚实”验证器,核查器以概率接受该验证器。1. 我们的主要结果是一个包含 PSPACE $\subseteq IP的“状态合成”模拟:任何由多元空间量子算算(可能运行于指数时间)可比较的国家序列都接受上述形式的互动协议。用这个国家合成协议来放大这一协议,我们还将一个单一的合成协议用于多元空间可转换器,仅对子空间进行非三维的子空间作用。