We introduce a game model called "customer attraction game" to demonstrate the competition among online content providers. In this model, customers exhibit interest in various topics. Each content provider selects one topic and benefits from the attracted customers. We investigate both symmetric and asymmetric settings involving agents and customers. In the symmetric setting, the existence of pure Nash equilibrium (PNE) is guaranteed, but finding a PNE is PLS-complete. To address this, we propose a fully polynomial time approximation scheme to identify an approximate PNE. Moreover, the tight Price of Anarchy (PoA) is established. In the asymmetric setting, we show the nonexistence of PNE in certain instances and establish that determining its existence is NP-hard. Nevertheless, we prove the existence of an approximate PNE. Additionally, when agents select topics sequentially, we demonstrate that finding a subgame-perfect equilibrium is PSPACE-hard. Furthermore, we present the sequential PoA for the two-agent setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月4日
Arxiv
0+阅读 · 2023年9月4日
Arxiv
0+阅读 · 2023年8月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
13+阅读 · 2020年10月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年9月4日
Arxiv
0+阅读 · 2023年9月4日
Arxiv
0+阅读 · 2023年8月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
13+阅读 · 2020年10月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员