As networks evolve toward 5G Standalone and 6G, operators face orchestration challenges that exceed the limits of static automation and Deep Reinforcement Learning. Although Large Language Model (LLM) agents offer a path toward intent-based networking, they introduce stochastic risks, including topology hallucinations and policy non-compliance. To mitigate this, we propose Graph-Symbolic Policy Enforcement and Control (G-SPEC), a neuro-symbolic framework that constrains probabilistic planning with deterministic verification. The architecture relies on a Governance Triad - a telecom-adapted agent (TSLAM-4B), a Network Knowledge Graph (NKG), and SHACL constraints. We evaluated G-SPEC on a simulated 450-node 5G Core, achieving zero safety violations and a 94.1% remediation success rate, significantly outperforming the 82.4% baseline. Ablation analysis indicates that NKG validation drives the majority of safety gains (68%), followed by SHACL policies (24%). Scalability tests on topologies ranging from 10K to 100K nodes demonstrate that validation latency scales as $O(k^{1.2})$ where $k$ is subgraph size. With a processing overhead of 142ms, G-SPEC is viable for SMO-layer operations.
翻译:随着网络向5G独立组网和6G演进,运营商面临的编排挑战已超出静态自动化和深度强化学习的能力范围。尽管大型语言模型智能体为实现基于意图的网络提供了一条路径,但它们也引入了随机性风险,包括拓扑幻觉和策略违规。为缓解此问题,我们提出了图符号策略执行与控制(G-SPEC),这是一个通过确定性验证约束概率规划的神经符号框架。该架构依赖于一个治理三元组——一个电信适配的智能体(TSLAM-4B)、一个网络知识图谱(NKG)以及SHACL约束。我们在一个模拟的450节点5G核心网上对G-SPEC进行了评估,实现了零安全违规和94.1%的修复成功率,显著优于82.4%的基线。消融分析表明,NKG验证贡献了大部分安全增益(68%),其次是SHACL策略(24%)。在10K至100K节点规模的拓扑上进行的可扩展性测试表明,验证延迟按 $O(k^{1.2})$ 缩放,其中 $k$ 为子图大小。凭借142毫秒的处理开销,G-SPEC适用于SMO层级的操作。