Rapid growth of data center networks (DCNs) poses significant challenges for large-scale traffic engineering (TE). Existing acceleration strategies, which rely on commercial solvers or deep learning, face scalability issues and struggle with degrading performance or long computational time. Unlike existing algorithms adopting parallel strategies, we propose Sequential Source-Destination Optimization (SSDO), a sequential solver-free algorithm for TE. SSDO decomposes the problem into subproblems, each focused on adjusting the split ratios for a specific source-destination (SD) demand while keeping others fixed. To enhance the efficiency of subproblem optimization, we design a Balanced Binary Search Method (BBSM), which identifies the most balanced split ratios among multiple solutions that minimize Maximum Link Utilization (MLU). SSDO dynamically updates the sequence of SDs based on real-time utilization, which accelerates convergence and enhances solution quality. We evaluate SSDO on Meta DCNs and two wide-area networks. In a Meta topology, SSDO achieves a 65\% and 60\% reduction in normalized MLU compared to TEAL and POP, two state-of-the-art TE acceleration methods, while delivering a $12\times$ speedup over POP. These results demonstrate the superior performance of SSDO in large-scale TE.


翻译:数据中心网络(DCNs)的快速增长给大规模流量工程(TE)带来了重大挑战。现有的加速策略依赖于商业求解器或深度学习,面临着可扩展性问题,并且存在性能下降或计算时间过长的困境。与现有采用并行策略的算法不同,我们提出了一种用于TE的顺序式无需求解器算法——顺序源-目的地优化(SSDO)。SSDO将问题分解为若干子问题,每个子问题专注于调整特定源-目的地(SD)需求的分流比,同时保持其他需求的分流比固定。为了提高子问题优化的效率,我们设计了一种平衡二分搜索方法(BBSM),该方法能在最小化最大链路利用率(MLU)的多个解中,识别出分流比最均衡的方案。SSDO根据实时利用率动态更新SD的优化顺序,从而加速收敛并提升解的质量。我们在Meta DCNs和两个广域网络上对SSDO进行了评估。在Meta拓扑中,与两种最先进的TE加速方法TEAL和POP相比,SSDO将归一化MLU分别降低了65%和60%,同时相比POP实现了12倍的加速。这些结果证明了SSDO在大规模TE中的卓越性能。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员