The goal of this paper is to understand the complexity of symmetry breaking problems, specifically maximal independent set (MIS) and the closely related $\beta$-ruling set problem, in two computational models suited for large-scale graph processing, namely the $k$-machine model and the graph streaming model. We present a number of results. For MIS in the $k$-machine model, we improve the $\tilde{O}(m/k^2 + \Delta/k)$-round upper bound of Klauck et al. (SODA 2015) by presenting an $\tilde{O}(m/k^2)$-round algorithm. We also present an $\tilde{\Omega}(n/k^2)$ round lower bound for MIS, the first lower bound for a symmetry breaking problem in the $k$-machine model. For $\beta$-ruling sets, we use hierarchical sampling to obtain more efficient algorithms in the $k$-machine model and also in the graph streaming model. More specifically, we obtain a $k$-machine algorithm that runs in $\tilde{O}(\beta n\Delta^{1/\beta}/k^2)$ rounds and, by using a similar hierarchical sampling technique, we obtain one-pass algorithms for both insertion-only and insertion-deletion streams that use $O(\beta \cdot n^{1+1/2^{\beta-1}})$ space. The latter result establishes a clear separation between MIS, which is known to require $\Omega(n^2)$ space (Cormode et al., ICALP 2019), and $\beta$-ruling sets, even for $\beta = 2$. Finally, we present an even faster 2-ruling set algorithm in the $k$-machine model, one that runs in $\tilde{O}(n/k^{2-\epsilon} + k^{1-\epsilon})$ rounds for any $\epsilon$, $0 \le \epsilon \le 1$.
翻译:本文的目的是要理解对称断裂问题的复杂性, 特别是最高独立值( MIS) 和与美元密切相关的 $\ beta$- ruling 设置问题, 在两个适合大型图形处理的计算模型中, 即 $k$- 机器模型和图形流模式。 对于 $k$- 机器模型中的 MIS, 我们改进了 $\ tilde{ O} (m/ k2 +\ delta/ k) 美元 。 对于 $\ 美元模型和 美元( SOD 2015 ), 我们用 $\ 美元 美元- 美元( m) 和 美元( k) 美元- 美元( 美元) 和 美元( 美元) 数字流模型中获取更高效的算法 。 更具体地说, 我们用 美元\\ 美元/ 美元( t) 美元( tal) 和 美元( 美元) 美元( ) 美元( ) 美元( ) 美元) 的计算方法, 我们用 美元( 美元) 。