Emerging 5G and next generation 6G wireless are likely to involve myriads of connectivity, consisting of a huge number of relatively smaller cells providing ultra-dense coverage. Guaranteeing seamless connectivity and service level agreements in such a dense wireless system demands efficient network management and fast service recovery. However, restoration of a wireless network, in terms of maximizing service recovery, typically requires evaluating the service impact of every network element. Unfortunately, unavailability of real-time KPI information, during an outage, enforces most of the existing approaches to rely significantly on context-based manual evaluation. As a consequence, configuring a real-time recovery of the network nodes is almost impossible, thereby resulting in a prolonged outage duration. In this article, we explore deep learning to introduce an intelligent, proactive network recovery management scheme in anticipation of an eminent network outage. Our proposed method introduces a novel utilization-based ranking scheme of different wireless nodes to minimize the service downtime and enable a fast recovery. Efficient prediction of network KPI (Key Performance Index), based on actual wireless data demonstrates up to ~54% improvement in service outage.
翻译:新兴的5G和下一代的6G无线可能涉及众多的连接,其中包括提供超高度覆盖的相对较小的细胞。保证如此稠密的无线系统的无缝连接和服务级协议需要高效的网络管理和快速的服务恢复。然而,恢复无线网络,在最大限度地恢复服务方面,通常需要评估每个网络要素的服务影响。不幸的是,在停机期间,缺少实时的KPI信息,使大多数现有方法在很大程度上依赖基于背景的人工评估。因此,根据实际无线数据对网络节点进行实时恢复几乎是不可能的,从而导致长期的中断。在文章中,我们探索了深度学习,以引入智能的、积极主动的网络恢复管理计划,以预测显著的网络断电。我们提出的方法引入了基于新颖利用的不同无线节点的排序计划,以尽量减少服务停机时间和快速恢复。基于实际无线数据的网络的高效预测 KPI(Key性能指数)显示服务中断率达到~54%。