This paper surveys 54 English Machine Reading Comprehension datasets, with a view to providing a convenient resource for other researchers interested in this problem. We categorize the datasets according to their question and answer form and compare them across various dimensions including size, vocabulary, data source, method of creation, human performance level, and first question word. Our analysis reveals that Wikipedia is by far the most common data source and that there is a relative lack of why, when, and where questions across datasets.


翻译:本文调查了54个英文机器阅读理解数据集,目的是为关注这一问题的其他研究人员提供方便的资源。 我们根据数据集的问答形式进行分类,并在各层面进行比较,包括大小、词汇、数据来源、创建方法、人类性能水平和第一个问题词。 我们的分析显示维基百科是迄今为止最常见的数据源,相对缺乏为什么、何时、在哪里跨数据集的问题。

0
下载
关闭预览

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
资源:10份机器阅读理解数据集 | 论文集精选 #02
PaperWeekly
11+阅读 · 2017年9月16日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
8+阅读 · 2019年3月28日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
相关资讯
相关论文
Top
微信扫码咨询专知VIP会员