Neural speech codecs have achieved strong performance in low-bitrate compression, but residual vector quantization (RVQ) often suffers from unstable training and ineffective decomposition, limiting reconstruction quality and efficiency. We propose PURE Codec (Progressive Unfolding of Residual Entropy), a novel framework that guides multi-stage quantization using a pre-trained speech enhancement model. The first quantization stage reconstructs low-entropy, denoised speech embeddings, while subsequent stages encode residual high-entropy components. This design improves training stability significantly. Experiments demonstrate that PURE consistently outperforms conventional RVQ-based codecs in reconstruction and downstream speech language model-based text-to-speech, particularly under noisy training conditions.


翻译:神经语音编解码器在低比特率压缩中已取得优异性能,但残差向量量化(RVQ)常面临训练不稳定和分解效率低下的问题,限制了重建质量与效率。我们提出PURE Codec(渐进式残差熵展开),这是一种利用预训练语音增强模型引导多阶段量化的新型框架。首阶段量化重建低熵、去噪的语音嵌入,后续阶段则编码残差的高熵成分。该设计显著提升了训练稳定性。实验表明,PURE在重建性能及基于语音语言模型的下游文本到语音任务中持续优于传统基于RVQ的编解码器,尤其在含噪声的训练条件下表现更为突出。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员