Contrasting marginal counterfactual survival curves across treatment arms is an effective and popular approach for inferring the causal effect of an intervention on a right-censored time-to-event outcome. A key challenge to drawing such inferences in observational settings is the possible existence of unmeasured confounding, which may invalidate most commonly used methods that assume no hidden confounding bias. In this paper, rather than making the standard no unmeasured confounding assumption, we extend the recently proposed proximal causal inference framework of Miao et al. (2018), Tchetgen et al. (2020), Cui et al. (2020) to obtain nonparametric identification of a causal survival contrast by leveraging observed covariates as imperfect proxies of unmeasured confounders. Specifically, we develop a proximal inverse probability-weighted (PIPW) estimator, the proximal analog of standard IPW, which allows the observed data distribution for the time-to-event outcome to remain completely unrestricted. PIPW estimation relies on a parametric model for a so-called treatment confounding bridge function relating the treatment process to confounding proxies. As a result, PIPW might be sensitive to model misspecification. To improve robustness and efficiency, we also propose a proximal doubly robust estimator and establish uniform consistency and asymptotic normality of both estimators. We conduct extensive simulations to examine the finite sample performance of our estimators, and proposed methods are applied to a study evaluating the effectiveness of right heart catheterization in the intensive care unit of critically ill patients.
翻译:不同治疗武器之间相对比的边际反事实生存曲线是一种有效而流行的方法,用以推断干预对右检查时间到活动结果的因果关系。在观察环境中进行这种推断的关键挑战在于可能存在未测量的混混,这可能使最常用的假设没有隐藏的混杂偏差的方法无效。在本文中,我们没有使标准无非测量的混杂假设成为最准的假设,而是将最近提议的米亚奥等人(2018年)、特切根等人(20202020年)、库伊等人(202020年)的准因果推断框架扩大,以通过利用观测环境中观察到的混杂因素作为不完善的混杂因素,对因果关系进行非参数识别。具体地说,我们开发了一个半偏差的概率加权估量(PIPW)估量器,将观察到的时间到时间到时间到时间结果的精确度分布完全不受限制。PIPW估算依赖于一个对准的病人(20202020年),Cui等人(20202020年)对因果关系进行非参数性鉴定,通过利用观察到的混成的因生存情况进行对比,通过利用观察到的混杂的混和精确处理的方法来确定一个精确的精度处理结果。我们所谓的精度的精度和精确处理过程。我们确定一个精确的精度的精度的精度分析结果,可能确定一个精确性处理结果。