Simplicial complexes are a generalization of graphs that model higher-order relations. In this paper, we introduce simplicial patterns -- that we call simplets -- and generalize the task of frequent pattern mining from the realm of graphs to that of simplicial complexes. Our task is particularly challenging due to the enormous search space and the need for higher-order isomorphism. We show that finding the occurrences of simplets in a complex can be reduced to a bipartite graph isomorphism problem, in linear time and at most quadratic space. We then propose an anti-monotonic frequency measure that allows us to start the exploration from small simplets and stop expanding a simplet as soon as its frequency falls below the minimum frequency threshold. Equipped with these ideas and a clever data structure, we develop a memory-conscious algorithm that, by carefully exploiting the relationships among the simplices in the complex and among the simplets, achieves efficiency and scalability for our complex mining task. Our algorithm, FreSCo, comes in two flavors: it can compute the exact frequency of the simplets or, more quickly, it can determine whether a simplet is frequent, without having to compute the exact frequency. Experimental results prove the ability of FreSCo to mine frequent simplets in complexes of various size and dimension, and the significance of the simplets with respect to the traditional graph patterns.
翻译:简单化的复杂过程是模拟更高层次关系的图表的概括化。 在本文中, 我们引入了简单化模式 -- -- 我们称之为简单型 -- -- 并概括了从图形领域频繁进行模式开采的任务, 从图形领域到简单化复杂过程。 由于搜索空间巨大,需要更高层次的分形学, 我们的任务特别具有挑战性。 我们显示, 在一个综合体中发现简单分子的事件, 可以在线性时间和大多数四面形空间中, 简化成双面形的图象形态问题。 我们然后提出一个抗调频率措施, 使我们能够从小简单型开始探索, 并且一旦其频率降到最低频率阈值以下, 就停止扩展一个简单模式。 有了这些想法和智能数据结构, 我们形成了一个记忆意识的算法, 通过仔细利用复杂和简单型图解之间的关系, 为我们复杂的采矿任务实现效率和可缩缩缩。 我们的算法, FreSco, 有两个口味: 它可以快速地将简单频率的频率变为简单性, 能够快速地确定精确度的频率, 。