Personalized news recommender systems support readers in finding the right and relevant articles in online news platforms. In this paper, we discuss the introduction of personalized, content-based news recommendations on DiePresse, a popular Austrian online news platform, focusing on two specific aspects: (i) user interface type, and (ii) popularity bias mitigation. Therefore, we conducted a two-weeks online study that started in October 2020, in which we analyzed the impact of recommendations on two user groups, i.e., anonymous and subscribed users, and three user interface types, i.e., on a desktop, mobile and tablet device. With respect to user interface types, we find that the probability of a recommendation to be seen is the highest for desktop devices, while the probability of interacting with recommendations is the highest for mobile devices. With respect to popularity bias mitigation, we find that personalized, content-based news recommendations can lead to a more balanced distribution of news articles' readership popularity in the case of anonymous users. Apart from that, we find that significant events (e.g., the COVID-19 lockdown announcement in Austria and the Vienna terror attack) influence the general consumption behavior of popular articles for both, anonymous and subscribed users.


翻译:个人化新闻建议系统支持读者在在线新闻平台中找到正确和相关的文章。在本文中,我们讨论在奥地利流行的在线新闻平台DiePresse上推出个性化、基于内容的新闻建议,重点是两个具体方面:(一) 用户界面类型,和(二) 减少偏差,因此,我们开展了为期两周的在线研究,从2020年10月开始,我们分析了建议对两个用户群体的影响,即匿名用户和订阅用户,以及三种用户界面类型,即台式、移动和平板设备的影响。关于用户界面类型,我们发现,对台式设备而言,看到建议的可能性最高,与建议互动的可能性最高,对移动设备而言最高。关于减少偏差,我们发现个性化、基于内容的新闻建议可以导致更均衡地传播匿名用户对新闻文章读者的受欢迎程度。除此之外,我们发现重大事件(例如奥地利的COVID-19封锁公告和维也纳恐怖袭击)影响用户对匿名和大众文章的普遍消费。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
6+阅读 · 2020年12月8日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员