Artificial intelligence (AI) is transforming elementary STEM education, yet evidence remains fragmented. This systematic review synthesizes 258 studies (2020-2025) examining AI applications across eight categories: intelligent tutoring systems (45% of studies), learning analytics (18%), automated assessment (12%), computer vision (8%), educational robotics (7%), multimodal sensing (6%), AI-enhanced extended reality (XR) (4%), and adaptive content generation. The analysis shows that most studies focus on upper elementary grades (65%) and mathematics (38%), with limited cross-disciplinary STEM integration (15%). While conversational AI demonstrates moderate effectiveness (d = 0.45-0.70 where reported), only 34% of studies include standardized effect sizes. Eight major gaps limit real-world impact: fragmented ecosystems, developmental inappropriateness, infrastructure barriers, lack of privacy frameworks, weak STEM integration, equity disparities, teacher marginalization, and narrow assessment scopes. Geographic distribution is also uneven, with 90% of studies originating from North America, East Asia, and Europe. Future directions call for interoperable architectures that support authentic STEM integration, grade-appropriate design, privacy-preserving analytics, and teacher-centered implementations that enhance rather than replace human expertise.
翻译:人工智能(AI)正在变革小学STEM教育,但相关证据仍较为零散。本系统性综述综合分析了258项研究(2020-2025年),涵盖八个应用类别:智能导学系统(占研究的45%)、学习分析(18%)、自动评估(12%)、计算机视觉(8%)、教育机器人(7%)、多模态感知(6%)、AI增强扩展现实(XR)(4%)以及自适应内容生成。分析表明,大多数研究聚焦于小学高年级(65%)和数学学科(38%),跨学科STEM整合研究有限(15%)。尽管对话式AI显示出中等有效性(在报告效应量的研究中,d = 0.45-0.70),但仅有34%的研究包含标准化效应量。八大主要缺陷限制了实际影响:生态系统碎片化、发展适宜性不足、基础设施障碍、隐私框架缺失、STEM整合薄弱、公平性差异、教师边缘化以及评估范围狭窄。地理分布亦不均衡,90%的研究源自北美、东亚和欧洲。未来方向呼吁发展支持真实STEM整合的互操作架构、适龄设计、隐私保护分析以及以教师为中心、旨在增强而非取代人类专业知识的实施方案。