Multi-gene panel testing allows many cancer susceptibility genes to be tested quickly at a lower cost making such testing accessible to a broader population. Thus, more patients carrying pathogenic germline mutations in various cancer-susceptibility genes are being identified. This creates a great opportunity, as well as an urgent need, to counsel these patients about appropriate risk reducing management strategies. Counseling hinges on accurate estimates of age-specific risks of developing various cancers associated with mutations in a specific gene, i.e., penetrance estimation. We propose a meta-analysis approach based on a Bayesian hierarchical random-effects model to obtain penetrance estimates by integrating studies reporting different types of risk measures (e.g., penetrance, relative risk, odds ratio) while accounting for the associated uncertainties. After estimating posterior distributions of the parameters via a Markov chain Monte Carlo algorithm, we estimate penetrance and credible intervals. We investigate the proposed method and compare with an existing approach via simulations based on studies reporting risks for two moderate-risk breast cancer susceptibility genes, ATM and PALB2. Our proposed method is far superior in terms of coverage probability of credible intervals and mean square error of estimates. Finally, we apply our method to estimate the penetrance of breast cancer among carriers of pathogenic mutations in the ATM gene.
翻译:多基因面板检测可以快速以较低成本测试许多癌症易感基因,使得这种测试能够受到更广泛人群的接受。因此,越来越多携带不同癌症易感基因的致病性生殖突变的患者被鉴定出来。这创造了一个巨大的机会,也迫切需要对这些患者进行适当的风险降低管理策略的咨询。咨询取决于准确估计与某一基因的突变相关的不同癌症的年龄特异性风险,即穿透率估计。我们提出了一种基于贝叶斯分层随机效应模型的荟萃分析方法,通过整合报告不同类型风险度量(如穿透率、相对风险和几率比)的研究来获取穿透率估计,同时考虑相关的不确定性。通过马尔科夫链蒙特卡罗算法估计参数的后验分布之后,我们估计穿透率和置信区间。我们通过基于两种中风险乳腺癌易感基因ATM和PALB2风险报告的模拟来研究提出的方法并与现有方法进行比较。我们提出的方法在置信区间的覆盖概率和估计的均方误差方面要优于现有方法。最后,我们应用我们的方法估计了ATM基因致病性突变携带者患乳腺癌的穿透率。