The number of login options on websites has increased since the introduction of web single sign-on (SSO) protocols. SSO services allow users to grant websites or relying parties (RPs) access to their personal profile information from identity provider (IdP) accounts. When prompting users to select an SSO login option, many websites do not provide any privacy information that could help users make informed choices. Moreover, privacy differences in permission requests across available login options are largely hidden from users and are time consuming to manually extract and compare. In this paper, we present an empirical study of popular RP implementations supporting three major IdP login options (Facebook, Google, and Apple) and categorize RPs in the top 300 sites into four client-side code patterns. Our findings suggest a relatively uniform distribution in three code patterns. We select RPs in one of these patterns as target sites for the design and implementation of SSOPrivateEye (SPEye), a browser extension prototype that extracts comparative data on SSO login options in RPs covering the three IdPs. Our evaluation of SPEye demonstrates the viability of extracting privacy information that can inform SSO login choices in the majority of our target sites.


翻译:自采用网上单一签名协议以来,网站登录选项的数量有所增加。SSO服务允许用户允许网站或依赖方从身份提供者账户中访问个人概况信息。当促使用户选择 SSO 登录选项时,许多网站不提供任何有助于用户作出知情选择的隐私信息。此外,现有登录选项之间在许可请求方面的隐私差异大多隐藏在用户手中,并耗费时间手工提取和比较。在本文中,我们介绍了一项经验性研究,对支持三项主要IDP登录选项(Facebook、Google和Apple)的流行性RP实施选项进行了经验性研究,并将前300个网站的RP分类为四种客户端代码模式。我们的调查结果显示,三种代码模式的分布相对一致。我们从其中一种模式中选择RPs作为设计和实施SSOPIEye(SPEye)的目标网站,一个浏览器扩展原型,在RPSO登录选项中提取涵盖三个IDP的比较数据。我们对SPEye的多数目标选择表明,SPEEO在三个目标网站中可以获取隐私选择的可行性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员