There is a renewed interest in radar sensors in the autonomous driving industry. As a relatively mature technology, radars have seen steady improvement over the last few years, making them an appealing alternative or complement to the commonly used LiDARs. An emerging trend is to leverage rich, low-level radar data for perception. In this work we push this trend to the extreme -- we propose a method to perform end-to-end learning on the raw radar analog-to-digital (ADC) data. Specifically, we design a learnable signal processing module inside the neural network, and a pre-training method guided by traditional signal processing algorithms. Experiment results corroborate the overall efficacy of the end-to-end learning method, while an ablation study validates the effectiveness of our individual innovations.
翻译:近年来,自动驾驶行业对雷达传感器的兴趣重新被引发。作为相对成熟的技术,雷达在过去几年中有着持续改进的趋势,使得它们成为替代或补充常用的激光雷达的有吸引力的选择。一种新兴的趋势是利用丰富的低级别雷达数据进行感知。在这项工作中,我们将这一趋势推向了极致——我们提出了一种在原始雷达模拟数字转换(ADC)数据上执行一体化学习的方法。具体而言,我们设计了一个可学习的信号处理模块,并使用基于传统信号处理算法的预训练方法进行指导。实验结果证实了一体化学习方法的整体有效性,而消融研究验证了我们个别创新的有效性。