Public resources and services (e.g., datasets, training platforms, pre-trained models) have been widely adopted to ease the development of Deep Learning-based applications. However, if the third-party providers are untrusted, they can inject poisoned samples into the datasets or embed backdoors in those models. Such an integrity breach can cause severe consequences, especially in safety- and security-critical applications. Various backdoor attack techniques have been proposed for higher effectiveness and stealthiness. Unfortunately, existing defense solutions are not practical to thwart those attacks in a comprehensive way. In this paper, we investigate the effectiveness of data augmentation techniques in mitigating backdoor attacks and enhancing DL models' robustness. An evaluation framework is introduced to achieve this goal. Specifically, we consider a unified defense solution, which (1) adopts a data augmentation policy to fine-tune the infected model and eliminate the effects of the embedded backdoor; (2) uses another augmentation policy to preprocess input samples and invalidate the triggers during inference. We propose a systematic approach to discover the optimal policies for defending against different backdoor attacks by comprehensively evaluating 71 state-of-the-art data augmentation functions. Extensive experiments show that our identified policy can effectively mitigate eight different kinds of backdoor attacks and outperform five existing defense methods. We envision this framework can be a good benchmark tool to advance future DNN backdoor studies.


翻译:公众资源和服务(例如数据集、培训平台、预先培训的模式)已被广泛采用,以方便深层学习应用软件的发展;然而,如果第三方提供者不信任,它们可以将有毒样品输入数据集或嵌入这些模型的后门;这种违反诚信行为可造成严重后果,特别是在安全和保安关键应用程序方面;提出了各种后门攻击技术,以提高效力和隐秘性;不幸的是,现有的防御办法不切实际,无法全面挫败这些攻击;在本文件中,我们调查数据增强技术在减少后门攻击和加强DL模型的稳健性方面的效力;为实现这一目标,采用了一个评价框架;具体地说,我们考虑一种统一的防御解决办法,即:(1) 采用数据增强政策,对受感染的模型进行微调,消除嵌入后门的效应;(2) 采用另一种增强政策,对输入样品进行预处理,并在推断过程中使触发点失效;我们提议一种系统办法,通过全面评估71个州级攻击和DL模型的稳健性,发现防止不同后门攻击的最佳政策;我们现有一套未来防御工具可以有效地减少八州级防御工具。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
9+阅读 · 2018年12月19日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月16日
Arxiv
0+阅读 · 2021年2月14日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
9+阅读 · 2018年12月19日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员