Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Existing solutions are mainly driven by small datasets, with low resolution and very few class labels (e.g., CIFAR). As a result, OOD detection for large-scale image classification tasks remains largely unexplored. In this paper, we bridge this critical gap by proposing a group-based OOD detection framework, along with a novel OOD scoring function termed MOS. Our key idea is to decompose the large semantic space into smaller groups with similar concepts, which allows simplifying the decision boundaries between in- vs. out-of-distribution data for effective OOD detection. Our method scales substantially better for high-dimensional class space than previous approaches. We evaluate models trained on ImageNet against four carefully curated OOD datasets, spanning diverse semantics. MOS establishes state-of-the-art performance, reducing the average FPR95 by 14.33% while achieving 6x speedup in inference compared to the previous best method.
翻译:在现实世界中安全部署机器学习模型(OOOD)是发现分配外投入的一个中心挑战。现有解决方案主要由小数据集驱动,其分辨率低,等级标签很少(如CIFAR)。结果,大规模图像分类任务OOOD检测基本上仍未探索。在本文中,我们通过提出一个基于集体的OOOD检测框架,以及名为MOS的新型OOOD评分功能,弥合了这一关键差距。我们的关键思想是将大型语义空间分解成具有类似概念的较小组别,这样可以简化在分配外的数据之间的决定界限,以便有效地探测OOD。我们的方法比以前的方法要好得多。我们根据四个经过仔细校正的OOOD数据集对图像网络培训的模式进行评估,这些数据集涉及多种语义学。MOS建立了最先进的状态,将平均FPR95减少14.33%,同时比以前的最佳方法加快了6x推算速度。