This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that are initially activated by experts when running what-if simulations, whereas weights connecting the neural concepts represent absolute correlation/association patterns between features. In addition, we introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily be controlled by regulating nonlinearity when updating neurons' activation values in each iteration. Finally, we study the convergence of our model and derive analytical conditions concerning the existence and unicity of fixed-point attractors.
翻译:本文展示了一个模糊的认知地图模型,以量化结构化数据集中的隐含偏差,其中的特征可以是数字或离散的。 在我们的提案中,问题特征被映射为神经概念,这些概念最初由专家在进行什么-如果模拟时启动,而连接神经概念的权重代表了各特征之间的绝对关联/关联模式。此外,我们引入了一个新的推理机制,配备了类似正常的转移功能,防止神经元饱和。这一新推理机制的另一个优点是,在更新神经元每次循环的活化值时,很容易通过监管非线性来控制它。最后,我们研究了模型的趋同,并提出了关于固定点吸引器的存在和不透明的分析条件。