Secret keys can be extracted from the power consumption or electromagnetic emanations of unprotected devices. Traditional counter-measures have limited scope of protection, and impose several restrictions on how sensitive data must be manipulated. We demonstrate a bit-serial RISC-V microprocessor implementation with no plain-text data. All values are protected using Boolean masking. Software can run with little to no counter-measures, reducing code size and performance overheads. Unlike previous literature, our methodology is fully automated and can be applied to designs of arbitrary size or complexity. We also provide details on other key components such as clock randomizer, memory protection, and random number generator. The microprocessor was implemented in 65 nm CMOS technology. Its implementation was evaluated using NIST tests as well as side channel attacks. Random numbers generated with our RNG pass on all NIST tests. Side-channel analysis on the baseline implementation extracted the AES key using only 375 traces, while our secure microprocessor was able to withstand attacks using 20 M traces.


翻译:秘密密钥可以从无防护装置的电耗或电磁操纵中提取。 传统的反措施具有有限的保护范围, 并对敏感数据必须如何操作施加若干限制 。 我们展示了一个没有纯文本数据的Bitsiral RISC- V微处理器实施过程。 所有值都使用布尔蒙面来保护。 软件运行时几乎没有反制措施, 减少了代码大小和性能管理。 与以前的文献不同, 我们的方法是完全自动化的, 可以应用于任意大小或复杂的设计。 我们还提供了其他关键部件的细节, 如时钟随机处理器、 记忆保护、 随机数字生成器等。 微处理器在65 nm CMOS 技术中应用了。 其实施使用 NIST 测试以及侧道攻击进行了评估。 在所有 NIST 测试中, 使用我们的 RNG 通行证生成的随机数字。 对基线执行的侧通道分析只用375个痕迹提取 AES 键, 而我们的安全微处理器能够用20 M 微点来经受攻击 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月29日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员