This paper provides a review of the job recommender system (JRS) literature published in the past decade (2011-2021). Compared to previous literature reviews, we put more emphasis on contributions that incorporate the temporal and reciprocal nature of job recommendations. Previous studies on JRS suggest that taking such views into account in the design of the JRS can lead to improved model performance. Also, it may lead to a more uniform distribution of candidates over a set of similar jobs. We also consider the literature from the perspective of algorithm fairness. Here we find that this is rarely discussed in the literature, and if it is discussed, many authors wrongly assume that removing the discriminatory feature would be sufficient. With respect to the type of models used in JRS, authors frequently label their method as `hybrid'. Unfortunately, they thereby obscure what these methods entail. Using existing recommender taxonomies, we split this large class of hybrids into subcategories that are easier to analyse. We further find that data availability, and in particular the availability of click data, has a large impact on the choice of method and validation. Last, although the generalizability of JRS across different datasets is infrequently considered, results suggest that error scores may vary across these datasets.


翻译:本文件回顾了过去十年(2011-2021年)中出版的职业推荐人系统(JRS)文献。与以往的文献审查相比,我们更加强调纳入工作建议的时间和对等性质的贡献。以前关于JRS的研究显示,在设计JRS时将这些意见考虑在内,可以改进模式性能。此外,这可能导致在一系列类似工作上更统一地分配候选人。我们还从算法公平的角度考虑文献。我们发现,文献中很少讨论这个问题,如果加以讨论,许多作者错误地认为,删除歧视性特征就足够了。关于JRS使用的模式类型,作者经常将其方法标为“杂交”。不幸的是,它们模糊了这些方法的含义。利用现有的推荐人分类法,我们将这大批混合体分为易于分析的子类。我们进一步发现,数据的提供,特别是点击数据的提供,对方法和验证的选择产生了很大影响。最后,尽管JRS的通用性在不同的数据中可能不同程度的误差表明,这些误差是罕见的。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Top
微信扫码咨询专知VIP会员