Cosine similarity is the common choice for measuring the distance between the feature representations in contrastive visual-textual alignment learning. However, empirically a learnable softmax temperature parameter is required when learning on large-scale noisy training data. In this work, we first discuss the role of softmax temperature from the embedding space's topological properties. We argue that the softmax temperature is the key mechanism for contrastive learning on noisy training data. It acts as a scaling factor of the distance range (e.g. [-1, 1] for the cosine similarity), and its learned value indicates the level of noise in the training data. Then, we propose an alternative design of the topology for the embedding alignment. We make use of multiple class tokens in the transformer architecture; then map the feature representations onto an oblique manifold endowed with the negative inner product as the distance function. With this configuration, we largely improve the zero-shot classification performance of baseline CLIP models pre-trained on large-scale datasets by an average of 6.1\%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员