Software systems are increasingly depending on data, particularly with the rising use of machine learning, and developers are looking for new sources of data. Open Data Ecosystems (ODE) is an emerging concept for data sharing under public licenses in software ecosystems, similar to Open Source Software (OSS). It has certain similarities to Open Government Data (OGD), where public agencies share data for innovation and transparency. We aimed to explore open data ecosystems involving commercial actors. Thus, we organized five focus groups with 27 practitioners from 22 companies, public organizations, and research institutes. Based on the outcomes, we surveyed three cases of emerging ODE practice to further understand the concepts and to validate the initial findings. The main outcome is an initial conceptual model of ODEs' value, intrinsics, governance, and evolution, and propositions for practice and further research. We found that ODE must be value driven. Regarding the intrinsics of data, we found their type, meta-data, and legal frameworks influential for their openness. We also found the characteristics of ecosystem initiation, organization, data acquisition and openness be differentiating, which we advise research and practice to take into consideration.


翻译:开放数据生态系统(ODE)是软件生态系统公共许可下数据分享的新兴概念,类似于开放源码软件(OSS),它与开放政府数据(OGD)有某些相似之处,在开放政府数据(OGD)中,公共机构共享数据以促进创新和透明度。我们的目标是探索有商业行为者参与的开放数据生态系统。因此,我们组织了五个焦点小组,共有22个公司、公共组织和研究机构的27名从业者。根据结果,我们调查了3个新兴的ODE实践案例,以进一步理解概念并验证初步发现。主要结果是一个关于ODE的价值、内涵、治理和演变的初步概念模型,以及实践和进一步研究的建议。我们认为,OD必须推动价值。关于数据的内在特征,我们发现其类型、元数据以及法律框架对其开放性具有影响力。我们还发现,生态系统的启动、组织、数据获取和开放性特征是区分,我们建议研究和实践考虑这些特征。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员