In many contexts, creating mappings for gestural interactions can form part of an artistic process. Creators seeking a mapping that is expressive, novel, and affords them a sense of authorship may not know how to program it up in a signal processing patch. Tools like Wekinator and MIMIC allow creators to use supervised machine learning to learn mappings from example input/output pairings. However, a creator may know a good mapping when they encounter it yet start with little sense of what the inputs or outputs should be. We call this an open-ended mapping process. Addressing this need, we introduce the latent mapping, which leverages the latent space of an unsupervised machine learning algorithm such as a Variational Autoencoder trained on a corpus of unlabelled gestural data from the creator. We illustrate it with Sonified Body, a system mapping full-body movement to sound which we explore in a residency with three dancers.
翻译:在许多情形下,为视觉互动创建绘图可以构成艺术过程的一部分。 创造者寻求一种表达式、新颖的、能给他们带来一种作者感的映射,他们可能不知道如何在信号处理补丁中进行编程。 Wekinator 和 MIMIC 等工具允许创作者使用受监督的机器学习,从示例输入/产出配对中学习绘图。 但是, 创作者在遇到时可能知道一个良好的映射过程, 但却没有多少关于投入或产出应该是什么的感知。 我们称之为一个开放式的映射过程。 满足这一需要, 我们引入了潜在映射, 从而利用一个不受监督的机器学习算法的潜在空间, 比如, 由创作者训练的一组无标签的基因数据 。 我们用Sonific body来演示它, 一个系统, 用来绘制我们与三名舞者在住所中探索的完整身体运动。