Alzheimer's disease (AD), a degenerative brain condition, can benefit from early prediction to slow its progression. As the disease progresses, patients typically undergo brain atrophy. Current prediction methods for Alzheimers disease largely involve analyzing morphological changes in brain images through manual feature extraction. This paper proposes a novel method, the Deformation-Aware Temporal Generative Network (DATGN), to automate the learning of morphological changes in brain images about disease progression for early prediction. Given the common occurrence of missing data in the temporal sequences of MRI images, DATGN initially interpolates incomplete sequences. Subsequently, a bidirectional temporal deformation-aware module guides the network in generating future MRI images that adhere to the disease's progression, facilitating early prediction of Alzheimer's disease. DATGN was tested for the generation of temporal sequences of future MRI images using the ADNI dataset, and the experimental results are competitive in terms of PSNR and MMSE image quality metrics. Furthermore, when DATGN-generated synthetic data was integrated into the SVM vs. CNN vs. 3DCNN-based classification methods, significant improvements were achieved from 6. 21\% to 16\% in AD vs. NC classification accuracy and from 7. 34\% to 21. 25\% in AD vs. MCI vs. NC classification accuracy. The qualitative visualization results indicate that DATGN produces MRI images consistent with the brain atrophy trend in Alzheimer's disease, enabling early disease prediction.
翻译:阿尔茨海默病(AD)作为一种退行性脑部疾病,早期预测有助于延缓其病程发展。随着疾病进展,患者通常出现脑萎缩现象。当前阿尔茨海默病的预测方法主要依赖通过人工特征提取分析脑部影像的形态学变化。本文提出一种创新方法——形变感知时序生成网络(DATGN),旨在自动化学习脑部影像中与疾病进展相关的形态学变化以实现早期预测。针对MRI影像时序序列中普遍存在的数据缺失问题,DATGN首先对不完整序列进行插值补全。随后,通过双向时序形变感知模块引导网络生成符合疾病进展规律的未来MRI影像,从而促进阿尔茨海默病的早期预测。基于ADNI数据集,DATGN在生成未来MRI时序序列的测试中表现出色,其PSNR与MMSE影像质量评价指标均达到先进水平。进一步地,将DATGN生成的合成数据集成至基于SVM、CNN及3DCNN的分类方法后,AD与正常对照(NC)的分类准确率提升了6.21%至16%,AD、轻度认知障碍(MCI)与NC的三分类准确率提升了7.34%至21.25%。定性可视化结果表明,DATGN生成的MRI影像符合阿尔茨海默病脑萎缩的发展趋势,为实现疾病早期预测提供了有效手段。