Vehicular Edge Computing (VEC) is a promising paradigm to enable huge amount of data and multimedia content to be cached in proximity to vehicles. However, high mobility of vehicles and dynamic wireless channel condition make it challenge to design an optimal content caching policy. Further, with much sensitive personal information, vehicles may be not willing to caching their contents to an untrusted caching provider. Deep Reinforcement Learning (DRL) is an emerging technique to solve the problem with high-dimensional and time-varying features. Permission blockchain is able to establish a secure and decentralized peer-to-peer transaction environment. In this paper, we integrate DRL and permissioned blockchain into vehicular networks for intelligent and secure content caching. We first propose a blockchain empowered distributed content caching framework where vehicles perform content caching and base stations maintain the permissioned blockchain. Then, we exploit the advanced DRL approach to design an optimal content caching scheme with taking mobility into account. Finally, we propose a new block verifier selection method, Proof-of-Utility (PoU), to accelerate block verification process. Security analysis shows that our proposed blockchain empowered content caching can achieve security and privacy protection. Numerical results based on a real dataset from Uber indicate that the DRL-inspired content caching scheme significantly outperforms two benchmark policies.
翻译:远距电子计算(Vec)是一个很有希望的范例,可以让大量数据和多媒体内容在车辆附近隐藏起来,然而,由于车辆高度机动性和动态无线频道条件,设计最佳内容缓存政策面临挑战。此外,由于个人信息敏感,车辆可能不愿意将其内容缓存到一个不信任的缓存提供者手中。深强化学习(DRL)是一种新兴技术,用高尺寸和时间分布功能来解决问题。许可区块链能够建立一个安全和分散的同行对等交易环境。在本文件中,我们将DRL和允许的块链整合到智能和安全内容缓存的车辆网络中。我们首先提出一个让车辆进行内容缓存和基站维护特许缓存的块链分散式缓存框架。然后,我们利用先进的DRL(DL)方法来设计一个考虑到流动性的优化内容缓存计划。最后,我们提出了一个新的块校验器选择方法,即验证工具,以加快阻隔式核查进程。安全分析显示,我们提出的缓存式安全标准中,根据“稳定式”安全计划,可以实现“稳定式安全”标准。