Collision-free path planning is an important requirement for autonomous exploration in unknown environments, especially when operating in confined spaces or near obstacles. This paper presents an autonomous exploration technique using a small drone. A local end-point selection method is designed using LiDAR range measurement and then generates the path from the current position to the selected end-point. Specifically, the generated path shows the consistent collision-free path in real-time by adopting the euclidean signed distance field-based grid search method. Simulations consistently show the safety, and reliability of the proposed path-planning method. Real-world experiments are conducted in three different mines, demonstrating successful autonomous exploration flight in environments with various structural conditions. All results indicate the high capability of the proposed flight autonomy framework for lightweight aerial-robot systems. Especially, our drone was able to perform an autonomous mission during our entry at the Tunnel Circuit competition (Phase 1) of the DARPA Subterranean Challenge.
翻译:无碰撞路径规划是在未知环境中进行自主探索的一个重要要求,特别是在封闭空间或近距离障碍下作业时。本文件展示了使用小型无人驾驶飞机的自主探索技术。当地端点选择方法是使用激光雷达射程测量设计,然后从当前位置到选定终点的路径。具体地说,产生的路径通过采用欧洲人签署的远程远程地面网格搜索方法,实时显示了连贯一致的无碰撞路径。模拟一致地显示了拟议路径规划方法的安全和可靠性。现实世界实验在三种不同的地雷中进行,展示了在各种结构条件下的环境下成功自主探索飞行。所有结果都表明,拟议的轻量航空机器人系统飞行自主框架具有很高的能力。特别是,我们的无人驾驶飞机能够在我们进入DARPA Subterranean Challenge的隧道竞赛(第1阶段)期间执行自主任务。