The evolution of 5G and Beyond networks has enabled new applications with stringent end-to-end latency requirements, but providing reliable low-latency service with high throughput over public wireless networks is still a significant challenge. One of the possible ways to solve this is to exploit path diversity, encoding the information flow over multiple streams across parallel links. The challenge presented by this approach is the design of joint coding and scheduling algorithms that adapt to the state of links to take full advantage of path diversity. In this paper, we address this problem for a synchronous traffic source that generates data blocks at regular time intervals (e.g., a video with constant frame rate) and needs to deliver each block within a predetermined deadline. We first develop a closed-form performance analysis in the simple case of two parallel servers without any buffering and single-packet blocks, and propose a model for the general problem based on a Markov Decision Process (MDP). We apply policy iteration to obtain the coding and scheduling policy that maximizes the fraction of source blocks delivered within the deadline: our simulations show the drawbacks of different commonly applied heuristic solutions, drawing general design insights on the optimal policy.
翻译:5G 和 5G 网络的演进使得新的应用程序能够实现严格的端到端的延迟要求,但提供可靠的低长服务,对公共无线网络进行高传输,这仍然是一个重大挑战。解决这一难题的可能办法之一是利用路径多样性,对平行链接的多个流流的信息流动进行编码。这一方法提出的挑战是设计联合编码和排期算法,以适应链接状态,充分利用路径多样性。在本文件中,我们处理同步的交通源问题,这种源代码定期生成数据块(例如,带固定框架率的视频),并需要在预定的最后期限内交付每个区块。我们首先在两个平行服务器的简单案例中进行闭式绩效分析,而没有任何缓冲和单包块。我们根据Markov 决策程序(MDP) 提出了一个总体问题模型。我们应用了政策术语来获取编码和排期政策,以最大限度地实现在最后期限内交付的源块的分数:我们的模拟展示了不同常用的超光层解决方案的后退,对最佳政策进行总体设计。