Decision paralysis, i.e. hesitation, freezing, or failure to act despite full knowledge and motivation, poses a challenge for choice models that assume options are already specified and readily comparable. Drawing on qualitative reports in autism research that are especially salient, we propose a computational account in which paralysis arises from convergence failure in a hierarchical decision process. We separate intent selection (what to pursue) from affordance selection (how to pursue the goal) and formalize commitment as inference under a mixture of reverse- and forward-Kullback-Leibler (KL) objectives. Reverse KL is mode-seeking and promotes rapid commitment, whereas forward KL is mode-covering and preserves multiple plausible goals or actions. In static and dynamic (drift-diffusion) models, forward-KL-biased inference yields slow, heavy-tailed response times and two distinct failure modes, intent saturation and affordance saturation, when values are similar. Simulations in multi-option tasks reproduce key features of decision inertia and shutdown, treating autism as an extreme regime of a general, inference-based, decision-making continuum.


翻译:决策瘫痪,即在拥有充分认知与动机的情况下仍出现犹豫、僵滞或行动失败的现象,对传统选择模型提出了挑战,因为这类模型默认选项已被明确指定且可直接比较。借鉴自闭症研究中尤为突出的质性报告,我们提出一种计算性解释:瘫痪源于层级决策过程中的收敛失败。我们将意图选择(追求什么)与可供性选择(如何达成目标)相分离,并将决策承诺形式化为在反向与正向Kullback-Leibler(KL)目标混合下的推理过程。反向KL具有模态聚焦特性,能促进快速承诺;而正向KL具有模态覆盖特性,可保留多个可能的目标或行动。在静态与动态(漂移扩散)模型中,当选项价值相近时,偏向正向KL的推理会产生缓慢、重尾的响应时间,并引发两种不同的失效模式:意图饱和与可供性饱和。在多选项任务中的仿真实验复现了决策惰性与行为中止的关键特征,从而将自闭症视为一种基于推理的通用决策连续统的极端状态。

0
下载
关闭预览

相关内容

【ICML2025】通用智能体需要世界模型
专知会员服务
22+阅读 · 6月4日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
42+阅读 · 2021年1月18日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员