Google Earth is the most popular virtual globe in use today. Given its popularity and usefulness, most users do not pay close attention to the positional accuracy of the imagery, and there is limited information on the subject. This study evaluates the horizontal accuracy of historical GE imagery at four epochs between year 2000 and 2018, and the vertical accuracy of its elevation data within Lagos State in Nigeria, West Africa. The horizontal accuracies of the images were evaluated by comparison with a very high resolution (VHR) digital orthophoto while the vertical accuracy was assessed by comparison with a network of 558 ground control points. The GE elevations were also compared to elevation data from two readily available 30m digital elevation models (DEMs), the Shuttle Radar Topography Mission (SRTM) v3.0 and the Advanced Land Observing Satellite World 3D (AW3D) DEM v2.1. The most recent GE imagery (year 2018) was the most accurate while year 2000 was the least accurate. This shows a continuous enhancement in the accuracy and reliability of satellite imagery data sources which form the source of Google Earth data. In terms of the vertical accuracy, GE elevation data had the highest RMSE of 6.213m followed by AW3D with an RMSE of 4.388m and SRTM with an RMSE of 3.682m. Although the vertical accuracy of SRTM and AW3D are superior, Google Earth still presents clear advantages in terms of its ease of use and contextual awareness.


翻译:鉴于其广度和实用性,大多数用户并不密切关注图像的定位准确性,而且关于这一主题的信息也有限。本研究报告评估了2000年至2018年期间四个世纪的历史GE图像的横向准确性,以及在尼日利亚、西非拉各斯州内其海拔数据的垂直准确性。对图像的横向准确性进行了评估,与一个非常高的分辨率(VHR)数字正方形相比,对垂直准确性进行了评估,而与一个由558个地面控制点组成的网络进行比较后,对垂直准确性进行了评估。GE海拔数据与两个可随时得到的30米数字升模型(DEM)、Shuttle雷达地形飞行任务(SRTM) v3.0和高级陆地观测卫星世界3D(AW3D) v2.1 的垂直准确性数据进行了比较。最新GE图像(2018)的准确性与2000年最准确性最差的分辨率相比,这显示构成谷歌地球数据来源的卫星图像来源的准确性和可靠性不断提高。在纵向准确性方面,GEGEGAGA3D数据的准确性方面,尽管AAR3D数据的准确性为ARSAR323的准确性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
31+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月22日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员