Reconfigurable intelligent surface (RIS) has been widely considered as a key technique to improve spectral efficiency for 6G communications. Compared with most existing research that only focuses on the reflective RIS, the design and prototyping of a novel transmissive RIS are presented in this paper, and its enhancement to the RIS-aided communication system is experimentally demonstrated. The 2-bit transmissive RIS element utilizes the penetration structure, which combines a 1-bit current reversible dipole and a 90{\deg} digital phase shifter based on a quadrature hybrid coupler. A transmissive RIS prototype with 16$\times$16 elements is designed, fabricated, and measured to verify the proposed design. The measured phase shift and insertion loss of the RIS element validate the 2-bit phase modulation capability. Being illuminated by a horn feed, the prototype achieves a maximum broadside gain of 22.0 dBi at 27 GHz, and the two-dimensional beamforming capability with scan angles up to $\pm$60{\deg} is validated. The experimental results of the RIS-aided communication system verify that by introducing the extra gain and beam steering capability, the transmissive RIS is able to achieve a higher data rate, reduce the transmit power, improve the transmission capability through obstacles, and dynamically adapt to the signal propagation direction.


翻译:重新配置的智能表面(RIS)被广泛视为提高6G通信光谱效率的关键技术。与大多数仅侧重于反射光学、设计并测量16美元元素的现有研究相比,本文件介绍了新型光学、创新光学和光学成像的设计和原型,并试验性地展示了对RIS辅助通信系统的增强。二位透射性RIS元素利用渗透结构,将1位当前可逆底盘和90位数字相位转换器结合起来,以等离子混合对齐器为基础,提高光谱效率。设计、制造和测量了16美元元素的传输原型,以核实拟议设计。测量的阶段变化和插入损失验证了2位相位调制能能力。2位光源显示,原型在27千兆赫兹上方位上将最大宽增22.0比,以扫描角度为1美元/p60美元/deg}的二维成形能力。一个具有16美元的传输原型的RIS原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型,16美元,16美元,16美元,用于16美元,设计型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型原型,16美元,16美元,16美元,16美元,

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员