We present the fundamental theory and implementation guidelines underlying Evidential Physics-Informed Neural Network (E-PINN) -- a novel class of uncertainty-aware PINN. It leverages the marginal distribution loss function of evidential deep learning for estimating uncertainty of outputs, and infers unknown parameters of the PDE via a learned posterior distribution. Validating our model on two illustrative case studies -- the 1D Poisson equation with a Gaussian source and the 2D Fisher-KPP equation, we found that E-PINN generated empirical coverage probabilities that were calibrated significantly better than Bayesian PINN and Deep Ensemble methods. To demonstrate real-world applicability, we also present a brief case study on applying E-PINN to analyze clinical glucose-insulin datasets that have featured in medical research on diabetes pathophysiology.
翻译:我们提出了证据物理信息神经网络(E-PINN)的基础理论与实现指南——这是一种新型的不确定性感知PINN。它利用证据深度学习的边缘分布损失函数来估计输出的不确定性,并通过学习得到的后验分布推断偏微分方程中的未知参数。通过在两个示例案例研究中验证我们的模型——具有高斯源的一维泊松方程和二维Fisher-KPP方程,我们发现E-PINN生成的实证覆盖概率在标定效果上显著优于贝叶斯PINN和深度集成方法。为展示其实际应用价值,我们还提供了一个简要案例研究,展示如何应用E-PINN分析临床葡萄糖-胰岛素数据集,该数据集在糖尿病病理生理学的医学研究中具有重要地位。