The Simple Assembly Line Balancing Problem with Power Peak Minimization (SALBP-3PM) minimizes maximum instantaneous power usage while assigning $n$ tasks to $m$ workstations and determining execution schedules within given cycle time constraints. This NP-hard problem couples workstation assignment, temporal sequencing, and power aggregation, presenting significant computational challenges for exact optimization methods. Existing Boolean Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) approaches suffer from baseline encodings generating $O(m^2)$ clauses per precedence edge. We introduce a Compact SAT Encoding (CSE) achieving $O(m)$ clauses per transitive precedence edge using sequential counter techniques. We instantiate four optimization variants: Clause-Based iterative SAT, Pseudo-Boolean (PB) Constraint iterative SAT, MaxSAT, and Incremental SAT. Comprehensive experimental evaluation on benchmark instances demonstrates consistent performance improvements over state-of-the-art approaches, enabling exact optimization on previously intractable industrial-scale instances. The encoding principles generalize to other assembly line balancing variants and broader scheduling problems with precedence constraints.


翻译:带功率峰值最小化的简单装配线平衡问题(SALBP-3PM)旨在将$n$个任务分配给$m$个工作站并确定执行调度方案,在给定节拍时间约束下最小化最大瞬时功率消耗。这一NP难问题耦合了工作站分配、时序排序与功率聚合,为精确优化方法带来了显著的计算挑战。现有布尔可满足性(SAT)与最大可满足性(MaxSAT)方法的基础编码对每个前序边产生$O(m^2)$子句。本文提出一种紧凑型SAT编码(CSE),利用顺序计数器技术对每个传递性前序边仅需$O(m)$子句。我们实现了四种优化变体:基于子句的迭代SAT、伪布尔(PB)约束迭代SAT、MaxSAT以及增量式SAT。在基准实例上的综合实验评估表明,相较于前沿方法,本方法实现了持续的性能提升,使得在以往难以处理的工业规模实例上进行精确优化成为可能。该编码原理可推广至其他装配线平衡变体及更广泛的带前序约束的调度问题。

0
下载
关闭预览

相关内容

SAT是研究者关注命题可满足性问题的理论与应用的第一次年度会议。除了简单命题可满足性外,它还包括布尔优化(如MaxSAT和伪布尔(PB)约束)、量化布尔公式(QBF)、可满足性模理论(SMT)和约束规划(CP),用于与布尔级推理有明确联系的问题。官网链接:http://sat2019.tecnico.ulisboa.pt/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2023年6月23日
Arxiv
76+阅读 · 2022年3月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
25+阅读 · 2023年6月23日
Arxiv
76+阅读 · 2022年3月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员