We introduce a novel projection depth for data lying in a general Hilbert space, called the regularized projection depth, with a focus on functional data. By regularizing projection directions, the proposed depth does not suffer from the degeneracy issue that may arise when the classical projection depth is naively defined on an infinite-dimensional space. Compared to existing functional depth notions, the regularized projection depth has several advantages: (i) it requires no moment assumptions on the underlying distribution, (ii) it satisfies many desirable depth properties including invariance, monotonicity, and vanishing at infinity, (iii) its sample version uniformly converges under mild conditions, and (iv) it generates a highly robust median. Furthermore, the proposed depth is statistically useful as it (v) does not produce ties in the induced ranks and (vi) effectively detects shape outlying functions. This paper focuses mainly on the theoretical properties of the regularized projection depth.


翻译:本文针对一般希尔伯特空间中的数据,提出了一种称为正则化投影深度的新型投影深度,重点关注函数数据。通过对投影方向进行正则化,所提出的深度避免了在无限维空间上朴素定义经典投影深度时可能出现的退化问题。与现有函数深度概念相比,正则化投影深度具有以下优势:(i) 无需对基础分布作矩假设;(ii) 满足包括不变性、单调性和无穷远处衰减在内的多种理想深度性质;(iii) 其样本版本在温和条件下一致收敛;(iv) 能生成高度稳健的中位数。此外,所提出的深度具有统计实用性,具体表现为:(v) 在诱导的秩中不会产生结;(vi) 能有效检测形状异常函数。本文主要聚焦于正则化投影深度的理论性质。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
专知会员服务
25+阅读 · 2021年7月31日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员