Artificial Intelligence in higher education opens new possibilities for improving the lecturing process, such as enriching didactic materials, helping in assessing students' works or even providing directions to the teachers on how to enhance the lectures. We follow this research path, and in this work, we explore how an academic lecture can be assessed automatically by quantitative features. First, we prepare a set of qualitative features based on teaching practices and then annotate the dataset of academic lecture videos collected for this purpose. We then show how these features could be detected automatically using machine learning and computer vision techniques. Our results show the potential usefulness of our work.
翻译:高等教育的人工智能为改进教学过程开辟了新的可能性,例如丰富教学材料,帮助评估学生的作品,甚至就如何加强教学向教师提供指导。我们遵循这一研究道路,在这项工作中,我们探索如何用数量特征自动评估学术讲座。首先,我们根据教学实践编写一套质量特征,然后对为此目的收集的学术讲座视频数据集进行说明。然后,我们展示如何利用机器学习和计算机视觉技术自动检测这些特征。我们的成果显示了我们工作的潜在效用。