The recent introduction of portable, low-field MRI (LF-MRI) into the clinical setting has the potential to transform neuroimaging. However, LF-MRI is limited by lower resolution and signal-to-noise ratio, leading to incomplete characterization of brain regions. To address this challenge, recent advances in machine learning facilitate the synthesis of higher resolution images derived from one or multiple lower resolution scans. Here, we report the extension of a machine learning super-resolution (SR) algorithm to synthesize 1 mm isotropic MPRAGE-like scans from LF-MRI T1-weighted and T2-weighted sequences. Our initial results on a paired dataset of LF and high-field (HF, 1.5T-3T) clinical scans show that: (i) application of available automated segmentation tools directly to LF-MRI images falters; but (ii) segmentation tools succeed when applied to SR images with high correlation to gold standard measurements from HF-MRI (e.g., r = 0.85 for hippocampal volume, r = 0.84 for the thalamus, r = 0.92 for the whole cerebrum). This work demonstrates proof-of-principle post-processing image enhancement from lower resolution LF-MRI sequences. These results lay the foundation for future work to enhance the detection of normal and abnormal image findings at LF and ultimately improve the diagnostic performance of LF-MRI. Our tools are publicly available on FreeSurfer (surfer.nmr.mgh.harvard.edu/).
翻译:最近对临床环境引进了便携式低地MRI(LF-MRI),这有可能改变神经成像。然而,LF-MRI由于分辨率和信号到噪音比率较低而受到限制,导致对大脑区域的描述不完整。为了应对这一挑战,最近机器学习的进展便利了从一个或多个低分辨率扫描中产生的更高分辨率图像的合成。在这里,我们报告了机器学习超分辨率(SR)算法的扩展,以合成1毫米异方MPRAGE类的LF-MRI T1加权和T2-加权序列扫描。我们对LF和高地(HF,1.5T-3T)配对数据集的初步结果显示:(一) 直接对LF-MRI图像应用现有自动分解工具;但(二) 当机器学习超分辨率超分辨率(SR)图像与HF-MRI的黄金标准测量高度相关时,分解工具(例如,对MMR=0.85,对正波中卷的R=0.84),对LF和高频和高地(RIS-RIM)的正常诊断结果进行最终升级,这些S-ROLF的S-S-S-S-S-S-S-S-S-S-S-SLM 提高基础,这些分解结果,从SLF-S-S-S-S-S-S-S-S-S-S-S-S-lax-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-